Составление фигур из треугольников и квадратов

1. Пример

Цель. Учить детей составлять геометрические фигуры из определенного количества палочек, пользуясь приемом пристроения к одной фигуре, взятой за основу, другой.

Материал: У детей на столах счетные палочки, доска, мел на данном и следующем занятиях.

Ход работы. 1. Воспитатель предлагает детям отсчитать по 5 палочек, проверить и положить их перед собой. Затем говорит: "Скажите, сколько потребуется палочек, чтобы составить треугольник, каждая сторона которого будет равна одной палочке. Сколько потребуется палочек для составления двух таких треугольников? У вас только 5 палочек, но из них надо составить тоже 2 равных треугольника. Подумайте, как это можно сделать, и составляйте".

После того как большинство детей выполнят задание, воспитатель просит их рассказать, как надо составить 2 равных треугольника из 5 палочек. Обращает внимание ребят на то, что выполнять задание можно по-разному. Способы выполнения надо зарисовать. При объяснении пользоваться выражением "пристроил к одному треугольнику другой снизу" (слева и т.д.), а в объяснении решения задачи пользоваться также выражением "пристроил к одному треугольнику другой, используя лишь 2 палочки".

2. Составить 2 равных квадрата из 7 палочек (воспитатель предварительно уточняет, какую геометрическую фигуру можно составить из 4 палочек). Дает задание: отсчитать 7 палочек и подумать, как из них составить на столе 2 равных квадрата.

После выполнения задания рассматривают разные способы пристроения к одному квадрату другого, воспитатель зарисовывает их на доске.

Вопросы для анализа: "Как составил 2 равных квадрата из 7 палочек? Что сделал сначала, что потом? Из скольких палочек составил 1 квадрат? Из скольких палочек пристроил к нему второй квадрат? Сколько потребовалось палочек для составления 2 равных квадратов?"

2. Пример

Цель. Составлять фигуры путем пристроения. Видеть и показывать при этом новую, полученную в результате составления фигуру; пользоваться выражением: "пристроил к одной фигуре другую", обдумывать практические действия.

Ход работы. Воспитатель предлагает детям вспомнить, какие фигуры они составляли, пользуясь приемом пристроения. Сообщает, чем они сегодня будут заниматься - учиться составлять новые, более сложные фигуры. Дает задания:

1. Отсчитать 7 палочек и подумать, как можно из них составить 3 равных треугольника.

После выполнения задания воспитатель предлагает всем детям составить 3 треугольника в ряд так, чтобы получилась новая фигура - четырехугольник (рис. 2). Этот вариант решения дети зарисовывают мелом на доске. Воспитатель просит показать 3 отдельных треугольника, четырехугольник и треугольник (2 фигуры), четырехугольник.

Составление фигур из треугольников и квадратов

Рис. 2 Составление фигур из треугольников

2. Из 9 палочек составить 4 равных треугольника. Подумать, как это можно сделать, рассказать, затем выполнять задание.

После этого воспитатель предлагает детям нарисовать мелом на доске составленные фигуры и рассказать о последовательности выполнения задания.

Вопросы для анализа: "Как составил 4 равных треугольника из 9 палочек? Какой из треугольников составил первым? Какие фигуры получились в результате и сколько?"

Воспитатель, уточняя ответы детей, говорит: "Начинать составлять фигуру можно с любого треугольника, а потом к нему пристраивать другие справа или слева, сверху или снизу".

3. Пример

Цель. Упражнять детей в самостоятельных поисках путей составления фигур на основе предварительного обдумывания хода решения.

Ход работы. Воспитатель задает детям вопросы: "Из скольких палочек можно составить квадрат, каждая из сторон которого равна одной палочке? 2 квадрата? (из 8 и 7). Как будете составлять 2 квадрата из 7 палочек?"

1. Отсчитать 10 палочек и составить из них 3 равных квадрата. Подумать, как надо составлять, и рассказать.

По мере выполнения воспитатель вызывает нескольких детей зарисовать составленные ими фигуры на доске и рассказать последовательность составления. Предлагает всем детям составить фигуру из 3 равных квадратов, расположенных в ряд, по горизонтали. На доске рисует такую же и говорит: "Посмотрите на доску. Здесь нарисовано, как можно по-разному решать эту задачу. Можно пристраивать к одному квадрату другой, а затем и третий. (Показывает.) А можно составить прямоугольник из 8 палочек, затем разделить его на 3 равных квадрата 2 палочками". (Показывает.) Затем задает вопросы: "Какие фигуры получились и сколько? Сколько прямоугольников получилось? Найдите и покажите их".

2. Из 5 палочек составить квадрат и 2 равных треугольника. Сначала рассказать, а затем составлять.

При выполнении этого задания дети, как правило, допускают ошибку: составляют 2 треугольника усвоенным способом - пристроением, в результате чего получается четырехугольник. Поэтому воспитатель обращает внимание ребят на условие задачи, необходимость составления квадрата, предлагает наводящие вопросы: "Сколько палочек нужно для составления квадрата? Поскольку у вас палочек? Можно ли составить, пристраивая 1 треугольник к другому? Как составить? С какой фигуры надо начинать составлять?" После выполнения задания дети объясняют, как они делали: надо составить квадрат и разделить его 1 палочкой на 2 равных треугольника.

4. Пример

Цель. Упражнять детей в умении высказывать предположительное решение, догадываться.

Ход работы. 1. Из 9 палочек составить квадрат и 4 треугольника. Подумать и сказать, как надо составлять. (Несколько детей высказывают предположения.)

Если дети затрудняются, воспитатель советует: "Вспомните, как составляли из 5 палочек квадрат и 2 треугольника. Подумайте и догадайтесь, как можно выполнить задание. Тот, кто первым решит задачу, зарисует полученную фигуру на доске".

После выполнения и зарисовки ответа воспитатель предлагает всем детям составить у себя одинаковые фигуры (рис. 3).

Составление фигур из треугольников и квадратов

Рис. 3 Составление фигур из треугольников

Вопросы для анализа: "Какие геометрические фигуры получились? Сколько треугольников, квадратов, четырехугольников? Как составляли? Как удобнее, быстрее составлять?"

2. Из 10 палочек составить 2 квадрата - маленький и большой.

3. Из 9 палочек составить 5 треугольников.

При необходимости в ходе выполнения второго и третьего заданий воспитатель дает наводящие вопросы, советы: "Сначала подумайте, затем составьте. Не повторяйте ошибок, ищите новый ход решения. Говорится ли в задаче о размере треугольников? Это задачи на смекалку, надо сообразить, догадаться, как решить задачу".

Итак, в начальный период обучения детей 5 лет решению простых задач на смекалку они самостоятельно, в основном практически действуя с палочками, ищут путь решения. С целью развития у них умения планировать ход мысли следует предлагать детям высказывать предварительные рассуждения или сочетать их с практическими пробами, объяснять способ и путь решения.

Возможно несколько видов решения задач первой группы. Усвоив способ пристроения фигур при условии общности сторон, дети очень легко и быстро дают 2-3 варианта решения. Каждая фигура при этом отличается от прежней пространственным положением. Одновременно дети осваивают способ построения заданных фигур путем деления полученной геометрической фигуры на несколько (четырехугольник или квадрат на 2 треугольника, прямоугольник - на 3 квадрата).

Решение с детьми 5-6 лет более сложных задач на перестроение фигур следует начинать с тех, в которых с целью изменения фигуры надо убрать определенное количество палочек и наиболее простых - на перекладывание палочек.

Процесс поисков детьми решения задач второй и третьей групп гораздо сложнее, нежели первой группы. Для этого нужно запомнить и осмыслить характер преобразования и результат (какие фигуры должны получиться и сколько) и постоянно в ходе поисков решения соотносить его с предполагаемыми или уже осуществленными изменениями. В процессе решения необходим зрительный и мыслительный анализ задачи, умение представить возможные изменения в фигуре.

Таким образом, в процессе решения задач дети должны овладеть такими мыслительными операциями анализа задачи, в результате которых можно представить мысленно различные преобразования, проверить их, затем, отбросив неверные, искать и пробовать новые ходы решения. Обучение должно быть направлено на формирование у детей умения обдумывать ходы мысленно, полностью или частично решать задачу в уме, ограничивать практические пробы.

В какой последовательности надо предлагать детям 5-6 лет задачи на смекалку второй и третьей групп?

В фигуре, состоящей из 5 квадратов, убрать 4 палочки, оставив один прямоугольник (рис. 4).

Составление фигур из треугольников и квадратов

Рис. 4

В фигуре, состоящей из 6 квадратов, убрать 2 палочки, чтобы осталось 4 равных квадрата (рис. 5).

Составление фигур из треугольников и квадратов

Рис. 5

Составить домик из 6 палочек, а затем переложить 2 палочки так, чтобы получился флажок (рис. 6).

Составление фигур из треугольников и квадратов

Рис. 6

В данной фигуре переложить 2 палочки, чтобы получилось 3, равных треугольника (рис. 7).

Составление фигур из треугольников и квадратов

Рис. 7

В фигуре, состоящей из 5 квадратов, убрать 3 палочки, чтобы осталось 3 таких же квадрата (рис. 8).

Составление фигур из треугольников и квадратов

Рис. 8

В фигуре, состоящей из 4 квадратов, убрать 2 палочки, чтобы осталось 2 неравных квадрата (рис. 9).

Составление фигур из треугольников и квадратов

Рис. 9

В фигуре из 5 квадратов убрать 4 палочки, чтобы осталось 2 неравных квадрата (рис. 10).

Составление фигур из треугольников и квадратов

Рис. 10

В фигуре из 5 квадратов убрать 4 палочки, чтобы остались 3 квадрата (рис. 11).

Составление фигур из треугольников и квадратов

Рис. 11

В фигуре из 4 квадратов переложить 2 палочки так, чтобы получилось 5 квадратов (рис. 12).

Составление фигур из треугольников и квадратов

Рис. 12

В фигуре из 5 квадратов убрать 4 палочки, чтобы осталось 3 квадрата (рис. 13).

Составление фигур из треугольников и квадратов

Рис. 13

Для этих и других аналогичных задач на смекалку характерно то, что преобразование, необходимое для решения, ведет к изменению количества квадратов, из которых составлена заданная фигура (задачи 2, 5 и др.), изменению их размера (задачи 6, 7), видоизменению фигур, например преобразование квадратов в прямоугольник в задаче 1.

В ходе занятий с целью руководства поисковой деятельностью детей воспитатель пользуется различными приемами, способствующими воспитанию у них положительного
Внимание! Для просмотра скрытого текста нужно войти на сайт как пользователь!



Прикрепления: Картинка 1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
Спасибо сказали (1):
ФрекенБок

Комментарии:

Информация
Посетители, находящиеся в группе Боты, не могут оставлять комментарии к данной публикации.